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1. Introduction

Conformal interfaces in two dimensions [1] are scale invariant junctions of two conformal

field theories. They are generalizations of conformal defects and of conformal boundaries

which correspond, respectively, to the case of identical theories on the two sides,1 or of

a trivial theory (with no massless degrees of freedom) on one side. There is an extensive

literature, and many beautiful experimental realizations of such objects in condensed-

matter physics (for reviews and many references see for instance [2, 3]). Applications to

condensed-matter physics are outside our scope in this work.

Two or more interfaces between the same pair of theories can be added. This amounts

to endowing them with a finite-dimensional space of (Chan-Patton or “quantum-dot”)

degrees of freedom. Furthermore, an interface between CFT1 and CFT2, and an interface

between CFT2 and CFT3 can, in principle, be fused to produce a CFT1→CFT3 interface.

1In the literature, general interfaces are sometimes also referred to as defects. We believe it is useful to

distinguish the two, and not only for semantic reasons. Defects live at a given point in the moduli space

of CFTs, and can be always multiplied together. General interfaces, on the other hand, are intertwiners

between different CFTs.
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The process is in general singular, because fusion (or its inverse, dissociation) corresponds

to non-trivial renormalization-group flow. An exception to this rule occurs when one of the

interfaces transmits all incident energy, in which case the left- and right- Virasoro charges

are separately conserved. Interfaces of this type, first introduced by Petkova and Zuber [4],

can move freely on a Riemann surface and are, in this sense, “topological”. Their fusion is

non-singular. Many examples of conformal and topological interfaces have been worked out

in the literature over the past few years (a list of references is [5-18]). Lifts to topological

gauge theories in higher dimensions [19-22], and dual holographic interpretations [1, 23-27]

have been also analyzed.2

One of the most interesting aspects of topological interfaces is the fact that they are

universal maps transforming one set of D-branes into another [7, 10]. All the symme-

try transformations of a CFT can be, in particular, implemented in this fashion [9]. A

generic topological interface does not, however, correspond always to a symmetry: its ac-

tion changes the mass, charges and other properties of the D-branes, and possibly even

those of the bulk geometry. This makes it tempting to speculate [29] that the algebra

of all conformal interfaces is a solution-generating algebra of string theory, similar to the

Ehlers-Geroch transformations of General Relativity. A classical-geometric intepretation

for this algebra has been suggested in ref. [10]. It is based on the folding trick [30, 1],

which identifies an interface with a middle-dimensional brane in the product target space

M1 ×M2. Such a brane can be described, at least locally, in terms of a multiple embed-

ding of M2 into M1.
3 This embedding determines the image of M2, and of all its D-brane

submanifolds, under the interface map.

A crucial question is whether this story survives quantization, and in particular the

singularities of interface fusion. In this paper we will answer the question in the simplest

setting, that of the c = 1 conformal field theory. The boundary states of this model are

classified [31], its topological interfaces have been studied [16], and most calculations can

be done explicitly. Our analysis will confirm the existence of a conformal-interface algebra,

and its geometric interpretation in the classical limit. At the same time, a beautiful and

unexpected picture will emerge: the topological interfaces of this simple model behave in

many ways like BPS black holes! They are minima of an entropy function, they freeze by

an attractor mechanism [32] one or both of the bulk radii, and they are stable against decay

to more elementary interfaces. Their algebra is reminiscent of the Harvey-Moore algebra

of BPS states [33]. There is, however, one significant difference: the conserved charges of

these topological interfaces do not take values in a regular lattice, but they are instead the

logarithms of integers. A quantum gas of such particles had been imagined in the past

by Julia [34] in an effort to rephrase the Riemann hypothesis as a problem in statistical

mechanics.

Supersymmetry plays no role in our discussion here. A different line of approach, that

avoids the problem of singularities, has been to study the fusion of defect lines in theories

2For an entry into the extensive literature on superconformal defects and the AdS/CFT correspondence

in d = 4 we refer the reader to the review [28].
3Assuming for simplicity that the world-volume gauge fields are zero.

– 2 –



J
H
E
P
0
2
(
2
0
0
8
)
0
8
5

with extended supersymmetry by twisting to a topological theory, see [21, 22] for results

on N = 4 gauge theories in four dimensions, and [17] for N = 2 theories in two dimensions.

The structure of our paper is as follows: In section 2 we define our conventions, and

review the boundary states for toroidally-compactified free-boson CFTs. In section 3 we

describe the unfolding of the U(1)2 symmetric boundary states of the two-scalar theory to

intertwining operators acting on the moduli space of circle compactifications. We explain

the special role of topological interfaces, and point out the analogy with BPS black holes.

Sections 4 and 5 contain our main results. We show there that the fusion of two symmetric

interfaces is well-defined, and that it does not depend on the radius of the collapsed region.

This reduces the calculation of the algebra to the topological case, studied in ref. [16].

We explain why the integer interface charges are multiplicatively conserved, and discuss

interface stability in a way reminiscent again of black holes. Finally, in section 6 we extend

the discussion to topological interfaces for which all CFT moduli are completely fixed, and

which have no semiclassical limit. The operator that interpolates between the circle and

orbifold branches is of this type. A detailed analysis of the extended c = 1 interface algebra

is postponed to future work.

2. Boundary states of toroidal CFT

2.1 Dirichlet and Neumann states

We will use the boundary-state formalism [35, 36] in which boundary conditions are de-

scribed by states in the Hilbert space of the bulk CFT. Let us start by recalling the

expressions of the boundary states for a free scalar field compactified on a circle of radius

R. The mode expansion of the field on the cylinder, parametrized by σ ∈ [0, 2π) and τ , is

given by

φ(τ, σ) = φ̂0 +
N̂

2R
τ + M̂Rσ +

∞∑

n=1

i

2
√

n

(
ane−in(τ+σ) + ãne−in(τ−σ) − h.c.

)
, (2.1)

where N̂ , M̂ are the integer-valued momentum and winding operators, and h.c. denotes

the hermitean conjugate. The canonical commutation relations imply

[an, a†m] = [ãn, ã†m] = δn,m and [φ̂0,
N̂

R
] = i , (2.2)

while the Hamiltonian reads

H = L0 + L̃0 =
N̂2

4R2
+ M̂2R2 +

∞∑

n=1

n(a†nan + ã†nãn)− 1

12
. (2.3)

The two simplest boundary states of this theory4 correspond to the Dirichlet and

4The free-boson theory contains also boundary states that break all U(1) symmetries of the bulk [31].

We will discuss these in section 6.
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Neumann boundary conditions for φ. They are given by

Dirichlet : ||D0 〉〉 =

∞∏

n=1

exp(a†nã†n)
( 1√

2R

∞∑

N=−∞

e−i N
R

φ0 |N, 0〉
)

(2.4)

Neumann : ||D1〉〉 =

∞∏

n=1

exp(−a†nã†n)
(√

R

∞∑

M=−∞

eiMφ̃0|0,M〉
)

(2.5)

where |N,M〉 is the normalized ground state in a given momentum and winding sector.

Using the commutation relations one verifies easily that

φ(0, σ)||D0 〉〉 = φ0||D0 〉〉 and ∂τφ(0, σ)||D1〉〉 = 0 ∀σ , (2.6)

as claimed. The arbitrary parameters φ0 and φ̃0 are, respectively, the position of the D0

brane, and the dual Wilson line on the D1 brane (normalized so as to be periodic under

2π shifts).

The boundary conditions, eq. (2.6), do not determine the normalization of the corre-

sponding states. This is usually fixed by Cardy’s condition [37], i.e. by the requirement that

the annulus diagram be equal to the finite-temperature partition function in the transverse

channel. Although the result for the case at hand is known, it will be useful to work it out

explicitly. Considering for instance the D0 brane, we may factorize the annulus diagram

as follows:

ADD ≡ 〈〈D0|| qH ||D0 〉〉 = q−
1
12 〈φ0|qH |φ0〉

∞∏

n=1

〈0|eq2naãea†ã† |0〉 , (2.7)

where q = e−T , |φ0〉 is the state within the parentheses in equation (2.4), i.e. the ground

state for fixed value of φ̂0, the a and ã are canonically normalized lowering operators of a

double harmonic-oscillator system (the same for all values of n), and |0〉 is the harmonic-

oscillator ground state. To calculate the individual matrix elements we use the operator

identities

eAB =

∫
d2z

π
e−zz̄−zA−z̄B if [A,B] = 0 , (2.8)

and eAeB = eBeAe[A,B] if [A,B] is a c-number. A simple calculation then gives:

〈0|eq2naãea†ã† |0〉 =

∫
d2zd2w

π2
e−zz̄−ww̄〈0|e−zqna−z̄qnãe−wa†−w̄ã† |0〉

=

∫
d2zd2w

π2
e−zz̄−ww̄eqn(zw+z̄w̄) =

1

1− q2n
. (2.9)

Computing the remaining matrix element, and combining everything leads to

ADD =
( 1

2R

∞∑

N=−∞

q
N2

4R2

) 1

η(q2)
=
( ∞∑

M=−∞

q̃ 4M2R2
) 1

η(q̃ 2)
, (2.10)

where η is the Dedekind function and q̃ = e−π2/T . The second equality follows from the

modular properties of η and the Poisson resummation formula. The final expression is

a partition function with integer non-negative multiplicities, and a unique lowest-energy

state. This shows that the D0 boundary state has been normalized consistently, and that

it describes an elementary brane.
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2.2 Branes in the two-scalar model

Let us next consider two scalar fields, φ1 and φ2, compactified on two circles with radii R1

and R2. Taking the tensor product of the states (2.4) and (2.5) gives the four factorizable

branes of the theory, which correspond to independent Neumann or Dirichlet conditions

for each scalar. Put differently, these describe a D0, a D2 and two D1 branes, with the

latter wrapping the two elementary cycles of the (φ1, φ2) torus. The most general elemen-

tary D1-brane winds (k1, k2) times around these cycles, where k1 and k2 may be assumed

relatively prime and k1 positive. The corresponding boundary states can be constructed

easily starting with the factorizable (1, 0) brane and then rotating by an angle

ϑ = tan−1

(
k2R2

k1R1

)
. (2.11)

The result reads

||D1, ϑ〉〉 =
∞∏

n=1

(eS
(+)
ij ai

neaj
n)†

(
g(+)

∞∑

N,M=−∞

eiNα−iMβ |k2N, k1M〉 ⊗ | − k1N, k2M〉
)

(2.12)

where α and β are position and Wilson-line moduli, the ground states in the tensor product

correspond to φ1 and φ2, in this order, and

S(+) = RT (ϑ)

(
−1 0

0 1

)
R(ϑ) =

(
−cos 2ϑ −sin 2ϑ

−sin 2ϑ cos 2ϑ

)
, (2.13)

where R(ϑ) is the rotation matrix for angle ϑ. Finally the normalization constant is the

g-factor [38] of the boundary state,

g(+) =

√
k2
1R

2
1 + k2

2R
2
2

2R1R2
=

ℓ√
2V

=

√
k1k2

sin2ϑ
(2.14)

with ℓ the length of the D1-brane and V the volume of the torus. The last rewriting of the

g-factor, which will be the most useful to us in the sequel, follows from simple trigonometric

identities. The reader can easily verify that when k2 = ϑ = 0, the state (2.12) reduces to

the tensor product of (2.4) with (2.5). The subscript “plus” refers to the sign of −detS(+),

or equivalently to minus the parity of the brane dimension. The relevance of this (seemingly

upside-down) notation will become obvious in the following sections.

The other symmetric stable branes of the c = 2 theory can be obtained from the above

D1 branes by a T-duality transformation of one of the scalars. With our conventions, the

action of this transformation is5

R→ 1

2R
, ãn → −ãn , and (N,M)→ (M,N) . (2.15)

T-dualizing one of the fields, say φ1, maps ||D1, ϑ〉〉 to the boundary state

||D2/D0, θ 〉〉 =

∞∏

n=1

(eS
(−)
ij ai

neaj
n)†
(
g(−)

∞∑

N,M=−∞

eiNα′−iMβ′ |k1M,k2N〉⊗|−k1N, k2M〉
)

(2.16)

5For a general discussion of the O(d, d, Z) transformations of D-branes see [39].
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CFT 1

CFT 2

CFT 1

CFT 2

Figure 1: Folding trick.

where

S(−) = S(+)

(
−1 0

0 1

)
=

(
cos 2θ −sin 2θ

sin 2θ cos 2θ

)
, θ = tan−1

(
2k2R1R2

k1

)
, (2.17)

and the g-factor of the brane is

g(−) =

√
k2
1 + 4k2

2R
2
1R

2
2

4R1R2
=

√
k1k2

sin2θ
. (2.18)

Notice that since T-duality inverts
√

2R1, the angle θ is in general not the same as ϑ. The

two angles coincide only at the self-dual point of the radius R1. The state (2.16) describes

the bound state of k1 D0s and k2 D2s. As a check, note that for (k1, k2) = (1, 0) or (0, 1)

one recovers the expressions of the pure D0, respectively the pure D2 brane. Note also

that, consistently with our notation, −detS(−) = −1 and the dimension of the branes is

even.

The generalization to oblique and to three-dimensional tori is straightforward. The

boundary states for an oblique two-torus can be obtained by a sequence of T-duality trans-

formations and rotations, starting with the elementary D0 brane. Furthermore, starting

with the general D2/D0 brane on the (φ1, φ2) plane of a three-torus, one can rotate it

to any other orientation in the compactification lattice. A T-duality then maps this to

an arbitrary D3/D1 bound state. For c = 4 there exist new branes (e.g. along the Higgs

branch of the D4/D0 system) which cannot be constructed by the above algorithm. We

will not pursue the study of these higher-dimensional branes in the present work.

3. Unfolding and the topological maps

3.1 The unfolding procedure

A conformal interface between two theories, 1 and 2, can be mapped to a conformal bound-

ary of the tensor-product theory CFT1⊗CFT2 by the folding trick shown in figure 1. Con-

versely, we can unfold a boundary state to an interface whenever the bulk CFT has two

non-interacting components. Let us assume that in some appropriate basis, constructed

– 6 –
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by acting with self-adjoint (left and right) operators Oλj
and Oλ̃j

on the vacuum, the

boundary state takes the general form

|| B 〉〉 =
∑
Bλ1λ̃1λ2λ̃2

|λ1, λ̃1〉 ⊗ |λ2, λ̃2〉 (3.1)

with coefficients Bλ1λ̃1λ2λ̃2
which are real.6 We also assume that both CFTs are left-right

symmetric. Then unfolding the boundary state (3.1) leads to the following interface and

anti-interface, expressed as operators from the Hilbert space of CFT2 to the Hilbert space

of CFT1 and vice-versa,

I(1← 2) =
∑
Bλ1λ̃1λ2λ̃2

|λ1, λ̃1〉〈λ̃2, λ2| ,
I(2← 1) =

∑
Bλ1λ̃1λ2λ̃2

|λ2, λ̃2〉〈λ̃1, λ1| . (3.2)

Notice that unfolding flips the sign of the (closed-string) time coordinate τ for the unfolded

theory, say CFT2. It therefore involves both hermitean conjugation and the exchange of

left- with right-movers, λ2 ↔ λ̃2. The individual matrix elements of the above operators

are two-point functions on the sphere in the presence of the conformal interface.

Let us now specialize to the D1 and D2/D0 branes of the previous section. Since the

torus is orthogonal and there is no B-field background, the two scalar fields are decoupled

in the bulk, and the boundary states can be unfolded. Flipping the sign of τ in the

expression (2.1) sends

N̂ → −N̂, an → −ã†n, and ãn → −a†n . (3.3)

This is, as argued, hermitean conjugation followed by the exchange of left and right movers

(the minus sign can be absorbed in the definition of basis). The only subtle point concerns

the choice of a real basis of states. For the ground states, for example, one must work with

the basis of states

|p,w〉+ | − p,−w〉√
2

and
|p,w〉 − | − p,−w〉√

2i
, (3.4)

in which the coefficients Bλ1λ̃1λ2λ̃2
are real. Hermitean conjugation followed by the reflection

of momentum for the scalar φ2, can then be shown to map |p2, w2〉 to | − p2, w2〉 in the

expressions (2.12) and (2.16) of the boundary states. The final result for the interface

operators therefore reads:

I(±) (R1←R2)
(k1,k2)

= L
(±)
(k1,k2)

∞∏

n=1

e

“
S

(±)
11 (a1

n)†(ea1
n)†−S

(±)
12 (a1

n)†a2
n−S

(±)
21 (ea1

n)†ea2
n+S

(±)
22 a2

nea2
n

”

, (3.5)

where the ground state operators are the lattice sums:

L
(+)
(k1,k2)

(α, β) =

√
k1k2

sin2ϑ
×

∞∑

N,M=−∞

eiNα−iMβ |k2N, k1M 〉〈k1N, k2M | , (3.6)

L
(−)
(k1,k2)

(α, β) =

√
k1k2

sin2θ
×

∞∑

N,M=−∞

eiNα−iMβ |k1M,k2N 〉〈k1N, k2M | , (3.7)

6Put differently, the one-point functions of hermitean bulk operators on the disk must be real, an

assumption that is certainly true for the toroidal branes considered here.
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and in eq. (3.5) the daggered oscillators act implicitly on L(±) from the left. For the reader’s

convenience, we collect here also the expressions for S(±):

S(+) =

(
−cos 2ϑ −sin 2ϑ

−sin 2ϑ cos 2ϑ

)
, ϑ = tan−1(

k2R2

k1R1
) , (3.8)

S(−) =

(
cos 2θ −sin 2θ

sin 2θ cos 2θ

)
, θ = tan−1

(
2k2R1R2

k1

)
. (3.9)

eqs. (3.5) to (3.9) define the most general interfaces which separate two free-boson theories

with radii R1 and R2, and which preserve a U(1)×U(1) subgroup of the U(1)4 symmetry

of the bulk. Below we will refer to the + and the − operators as, respectively, even and

odd. When no confusion is possible, their dependence on the phases (α, β) and on the radii

(R1 ← R2) will be omitted.

3.2 Reflection, transmission and entropy

It is important here to note that the operators (3.5) depend on the radii only through the

angles ϑ and θ. This is true in particular for the matrices S(±), whose elements are the

reflection and transmission coefficients across the interface [1, 13]. Total reflection occurs

when ϑ or θ is a multiple of 90o, which requires either k1 or k2 to vanish. This corresponds

(up to Chan-Patton multiplicity) to the four factorizable boundary states of section 2,

which unfold to the interface operators

Irefl = ||Dr1〉〉〈〈Dr2|| with r1, r2 = 0, 1 . (3.10)

The two CFTs have in this case separate consistent boundaries, and they decouple com-

pletely.

More interesting is the case of total transmission, which occurs for angles that are an

odd multiple of 45o. The interface operators have now the form

I(±)
top = L(±)

∞∏

n=1

e(−)l[(a1
n)†a2

n±(ea1
n)†ea2

n] , for ϑ, θ = (2l + 1)
π

4
. (3.11)

It follows that the energy-momentum tensor is continuous across the interface, i.e. the

Virasoro generators (not to be confused with the lattice sums!) obey the commutation

relations

L1
n I(±)

top = I(±)
top L2

n and L̃1
n I(±)

top = I(±)
top L̃2

n . (3.12)

Such interfaces have been dubbed topological , because they can be deformed freely across

a Riemann surface. The topological interfaces for toroidal CFTs (both symmetric and non-

symmetric) were analyzed recently in ref. [16]. Here we will only discuss a few, relevant for

our purposes, features.

Consider first the case of defects, i.e. R1 = R2 = R. As argued generally by Fröhlich et

al [9], the topological defects should include the generators of automorphisms of the CFT.

At a generic value of the radius the only topological defects are

e(α, β) ≡ I(+) (R←R)
(1,1) and r(α, β) ≡ I(+) (R←R)

(1,−1) . (3.13)

– 8 –
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These generate indeed the semidirect product U(1)2 ⋊Z2, i.e. the left and right translations

and the reflections of φ. Notice that the trivial (identity) defect is e(0, 0), i.e. a diagonal

D1-brane in the (φ1, φ2) plane, after folding. Turning on a Wilson line, translating and/or

reflecting this diagonal D1-brane, gives all the other symmetry generators for generic R.

At the self-dual radius, 2R2
∗ = 1, there appear two new topological defects,

ω ≡ I(−) R∗←R∗

(1,1) and ω̃ ≡ I(−) R∗←R∗

(1,−1) . (3.14)

These generate T-duality twists, i.e. separate left and right reflections of φ. They enhance

the symmetry to (U(1) ⋊ Z2)
2, which is the subgroup that preserves a maximal torus of

the full SU(2)2 symmetry of the self-dual theory. The missing generators break more than

two of the original U(1) symmetries of the free-scalar model, which explains why they were

not included in our set of defects. Thus our analysis agrees with the observation of ref. [9].

What about other topological interfaces and defects? From the expression for the an-

gles one sees that (provided k1k2 6= 0) every one of the operators (3.5) becomes topological

at a special value of the ratio, or of the product of radii. Specifically this happens when

R2

R1
=
∣∣∣
k1

k2

∣∣∣ or 2R1R2 =
∣∣∣
k1

k2

∣∣∣ (3.15)

in the even, respectively odd case. Inspection of the lattice sums (3.6) and (3.7) reveals

that when |k1k2| > 1 these operators map all but the proper sublattice |k1Z, k2Z〉 of the

ground states to zero. The pairs of states that survive in these sums are states with equal

U(1) charges and conformal weights. These higher topological interfaces do not therefore

correspond to invertible operators, but rather to projectors, coupled with isomorphisms of

appropriate subsectors of the two CFTs. For example, the (2, 1) topological interface maps

the even-winding-number states of a theory at radius R to the even-momentum-number

states of a theory at radius 2R.

An important feature of topological interfaces is that they minimize the entropy, de-

fined as the logarithm of the g factor, when the radii vary with (k1, k2) held fixed. This

is a property reminiscent of the minimum-energy condition for BPS states. It is a simple

consequence of the general expression for the g-function (ϑ must be replaced by θ in the

odd case):

log g = log
√
|k1k2| − log

√
|sin2ϑ| . (3.16)

The second contribution (which depends on the reflectivity [1, 13] of the interface) is

non-negative, and it vanishes only in the topological case. The first, irreducible con-

tribution is also non-negative, and it vanishes only for the symmetry-generating defects

(k1, k2) = (1,±1). These latter are the only invertible maps, which is consistent with the

fact that they should not generate any entropy. We conjecture that topological7 interfaces

between unitary conformal theories always have non-negative entropy, and that the bound

is saturated only by CFT isomorphisms.

7More general interfaces can have a g factor smaller than one, and hence a negative entropy. An example

is the totally-reflecting interface corresponding to a simple D2-brane, for which g =
√

R1R2. We thank

Ingo Runkel and the JHEP referee for pointing this out.
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Figure 2: Fusion of two interfaces between three CFTs with radii R1, R2 and R3. In the limit of

vanishing separation, ε→ 0, the result should not depend on the value of the radius in the middle

region.

The analogy of topological interfaces with BPS black holes can actually be pushed even

further: one can interpret the topological conditions (3.15) as an attractor mechanism [32]

that fixes the moduli of the bulk theory for any given set of “charges” (k1, k2,±). Notice

that there are two asymptotic regions and hence two bulk radii, but only one combination

of the two is being fixed. Also, the entropy of a topological interface is the sum of the

logarithms, rather than of the absolute values, of the integer charges. This is compatible

with the fact that charges are multiplicatively conserved, as we are now going to explain.

4. The algebra of interfaces

4.1 Topological reduction of the fusion

Two boundary states, and hence also the corresponding interface operators, can be added.

If they are identical, this amounts simply to introducing a Chan-Patton multiplicity. On

the other hand, two operators can also be multiplied whenever the image of one lies in the

domain of definition of the other. In the case at hand, this corresponds to juxtaposing an

interface between CFT1 and CFT2 and an interface between CFT2 and CFT3, as shown

in the figure 2. Because the product of these two operators is in general singular, we must

first separate the interfaces by a distance ε. We work as before on the cylinder (σ, τ),

so that the periodicity of σ sets the scale of distance. By the usual arguments of QFT

we expect that the limit ε → 0 can be rendered finite by a local self-energy counterterm.

Accordingly, we define the fusion of the two interfaces as follows:

I ◦ I ′ ≡ limε→0 e2πd/ε I(1← 2) e−εH2 I ′(2← 3) , (4.1)

where H2 is the generator of τ -translations in CFT2, and d/ε is the self-energy counterterm

which must be adjusted so as to make the right-hand-side finite. Notice that this procedure

is unambiguous because ε is the only relevant length scale in the problem.8 The fact

8The inverse “temperature” 2π may only appear multiplicatively in the exponent.
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that I ◦ I ′ should be the sum of elementary (1 ← 3) interfaces with integer non-negative

coefficients is a non-trivial check of the consistency of this definition.

Now the following intuitive but naive argument motivates one of the main points of this

paper: in the limit ε→ 0 the region in the middle disappears, and so should any memory

of the value of the radius in this region. Thus, modulo a local renormalization, the result

should be independent of the value of R2. To be more precise, given interfaces I(R1←R2)
(k1,k2)

and I ′(R2←R3)
(k′

1,k′
2)

the fusion product is expected to be independent of variations in R2, while

all other quantities R1, R3, ki, k
′
i are held fixed. An additional argument is provided by

continuity: if the fusion coefficients are integers they should not jump around as we vary

R2, except possibly at singular points in the moduli space. We will actually show that

these naive arguments are correct in the case at hand, by computing explicitly (4.1) in the

following section. Here we assume the result, and proceed to calculate the algebra.

This is made easy by the following trick: since the value of R2 is irrelevant, we may

choose it so as to make the interface I ′ topological. We have seen in the previous section

that this is always possible, as long as k′1k
′
2 does not vanish.9 Now using the commutation

property of topological interfaces, eq. (3.12), we find

I e−εH2I ′top = I I ′top e−εH3, (4.2)

and on the right-hand-side the ε→ 0 limit can be taken smoothly. Put differently, once I ′
has been made topological, it can be moved at no cost. We may thus restrict attention to

non-singular products of one topological with one arbitrary interface.

The following observation simplifies the calculation even further: let us define the basic

radius-changing interface, which is the deformed identity operator

e
(R1←R2)
def ≡ I(+) (R1←R2)

(1,1) with α = β = 0 . (4.3)

Now an arbitrary conformal interface can be obtained as the product of a topological

interface with this basic deformed identity. Explicitly:

I(±) (R1←R2)
(k1,k2)

= I(±) (R1←R)
(k1,k2)

e
(R←R2)
def = e

(R1←R′)
def I(±) (R′←R2)

(k1,k2)
, (4.4)

where R and R′ are here implicitly adjusted so as to make the (k1, k2) operators topological.

Let us prove the first equality, by evaluating explicitly the product in the even case and

with k1k2 > 0 (the other three cases work in a similar way). From the general form (3.11)

we see that the topological (R1 ← R) operator commutes with the oscillator modes,

a1
n I

(+)
top = I(+)

top an and ã1
n I

(+)
top = I(+)

top ãn , (4.5)

where an and ãn refer to the region of radius R, and the same equations hold for daggers.

Thus in the expression (3.5) for the basic R← R2 interface we may replace the a†n by (a1
n)†,

and the a†n by (a1
n)†. Furthermore the angle that enters the S-matrix of this interface is

given by tanϑ = R2/R = k2R2/k1R1, where the second step uses the topological property

9If k′
1k

′
2 = 0, then I′ is totally reflecting and the CFT3 decouples. The problem reduces to the fusion of

an interface with a boundary, a case that we will discuss in the end.
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of the R1 ← R operator. Put differently, detaching a topological part does not change the

reflectivity of the interface. Finally, the lattice sum in edef is just the trivial isomorphism of

momentum and winding states. Multiplying with the lattice sum of the R1 ← R operator

completes the construction of the R1 ← R2 operator, and proves the relations (4.4) .

These relations show that all conformal interfaces (3.5) can be written as products of

a deformed identity and a topological “dress”, and that the latter can be moved off to the

left or right. We can therefore calculate the product (4.2) by stripping I of its topological

dress, multiplying this with the operator I ′top, and then dressing back the deformed identity

on the left side. Hence, we need only to study the products of topological operators.

4.2 The multiplicative law for the charges

Since the oscillator modes enter in such products trivially, it is sufficient to multiply their

lattice sums. Furthermore, by acting with the symmetry generator e(α, β) from the left

or the right, we may set all phases in these lattice sums to zero. Notice that this is a

non-commutative operation, e.g.

I(+)
(k1,k2)

(α, β) = e

(
α

k2
,

β

k1

)
I(+)

(k1,k2)
(0, 0) = I(+)

(k1,k2)
(0, 0) e

(
α

k1
,

β

k2

)
(4.6)

with a similar equation for the odd case. When all the phases are set to zero, the product

of two even topological operators reads:

√
|k1k2k′1k

′
2|

∑

N,M,N ′,M ′

|k2N, k1M〉〈k1N, k2M || k′2N ′, k′1M ′〉〈k′1N ′, k′2M ′|

= JJ ′
√
|K1K2|

∑

N,M

|JK2N,J ′K1M〉〈JK1N, J ′K2M | , (4.7)

where in the lower line we have redefined N and M so that they run unconstrained over

all the integers, and

J = gcd(k′1, k2) , J ′ = gcd(k1, k
′
2) , K1 =

k1k
′
1

JJ ′
, K2 =

k2k
′
2

JJ ′
, (4.8)

with “gcd” standing for the greatest common divisor. If J = J ′ = 1, the product is just

the elementary (K1,K2) interface. More generally, it is an array of JJ ′ such interfaces,

arranged periodically in the (α, β) parameter space [16]. Periodic arrays couple indeed only

to a sublattice of momenta and windings, as the reader will have no difficulty to verify.

Explicitly, the product formula reads

I(+)
(k1,k2)

(0, 0) ◦ I(+)
(k′

1,k′
2)

(0, 0) =
∑

j,j′

I(+)
(K1,K2)

(
2πj

J
,
2πj′

J ′

)
, (4.9)

where the sums run over j = 1, . . . J and j′ = 1, . . . J ′.

This result can be expressed more elegantly if we mod out the action of the U(1)2

symmetry. Let us denote by [k1, k2]
(+) the equivalence class of all D1-branes winding

(k1,−k2) times around the (φ1, φ2) torus. We also relax the condition that the winding
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numbers be relatively prime, but take note of the fact that the (open-string) moduli space

has dimension equal to 2 gcd(k1, k2). For these equivalence classes of D-branes the fusion

formula takes the simple form

[k1, k2]
(+) ◦ [k′1, k

′
2]

(+) = [k1k
′
1, k2k

′
2]

(+) . (4.10)

As anticipated already in section 3, the interface charges get multiplied and topological

fusion conserves the entropy. Notice that the dimension of the moduli space of the product

can be bigger than the sum of dimensions of its two factors. Thus a generic representative

in the equivalence class on the right-hand side need not factorize. For example, three

elementary (1, 1) interfaces can only be written in the product form (1, 3) ◦ (3, 1) if they

are arranged in a periodic array.

To complete the derivation of the algebra, we need also to analyze the odd case. This

can be done with the help of the T-duality twist, defined in eq. (3.14) at the self-dual point.

Clearly this operator remains topological for any pair of radii such that 2R1R2 = 1. A

simple calculation shows that ω squares to 1, and that it exchanges the even and the odd

interfaces as follows:

ω ◦ I(−)
(k1,k2)

(α, β) = I(+)
(k1,k2)

(α, β) , I(−)
(k1,k2)

(α, β) ◦ ω = I(+)
(k2,k1)

(−β,−α) . (4.11)

Together with equations (4.6) and (4.9), these twist relations are sufficient to compute the

fusion of any two interfaces in the list (3.5). The final result, generalizing (4.10), can be

worked out easily:

[k1, k2]
(±) ◦ [k′1, k

′
2]

(+) = [k1k
′
1, k2k

′
2]

(±) ,

[k1, k2]
(±) ◦ [k′1, k

′
2]

(−) = [k2k
′
1, k1k

′
2]

(∓) . (4.12)

A simple corollary of the above fusion rules is that the symmetry generators, together with

one representative in the [1, p](+) class for each prime number p, are sufficient to generate

the entire algebra of these topological interfaces.

These fusion relations continue to hold for totally-reflecting interfaces, i.e. in the special

case k′1k
′
2 = 0. They then describe the action of the interface operators on the D-branes

of the c = 1 model. For example, a Dirichlet condition in the left-half space corresponds

to an operator in the class [1, 0](−) or [0, 1](+), where the two choices differ by a twist in

the decoupled right-half region. Acting on this D0-brane with an operator in the [k1, k2]
(+)

class produces a periodic array of D0-branes, as illustrated in figure 3. This agrees with

the simple geometric rule that was sketched in the introduction. All other actions of our

interface operators on the D0-brane and the D1-brane of the c = 1 model can be obtained

from this picture by T-duality twists. This completes our discussion of the algebra. We

turn now to a proof of the argument that allowed the reduction to the topological case.

5. Entropy release and stability

5.1 Proof of the topological reduction

Let us return to the definition (4.1) of the fusion product. Using the relations (4.4) we can

strip off the non-trivial topological parts, if any, of I and I ′ to the left, respectively right,
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φ

φ2

1

Figure 3: The action of a [1, 3](+) operator on the D0-brane of theory 2 (black dot) produces three

D0-branes of theory 1 (light-colored dots). The latter are arranged periodically around the circle.

leaving in the middle two deformed identities, i.e. two basic radius-changing interfaces in

the (1, 1) sector. This is illustrated in figure 4. The two radii, R′1 and R′3, in the nucleated

regions are fixed by the requirement that the split-off interfaces be topological, as was

explained in the previous section. We may now take the limit ǫ→ 0, before dressing back

the result with the topological interfaces from the left and right. To prove our claim, it is

therefore sufficient to show that for any arbitrary triplet of radii we have

e
(R′

1←R2)
def ◦ e

(R2←R′
3)

def = e
(R′

1←R′
3)

def , (5.1)

i.e. that the product of deformed identities is the deformed identity. In the rest of this

section we will explain why this is true. Readers not interested in the technical details can

jump ahead to the next subsection.

Because the different frequencies of the scalar field do not talk, the calculation of the

product of two interfaces factorizes into a separate calculation in each frequency sector.

Thus the product, before taking the coincidence limit, reads

e
(R′

1←R2)
def qH2 e

(R2←R′
3)

def =
1√

sin 2ϑ′ sin 2ϑ

∑

N,M

qhN,M |N,M〉〈N,M |
∞∏

n=1

On , (5.2)

where q ≡ e−ǫ, hN,M is the energy of the (N,M) ground state in CFT2, the operators On

are the result of evaluating the product in the nth-frequency sector, and we have defined

the angles

tanϑ =
R2

R′1
, tanϑ′ =

R′3
R2

and tanΘ =
R′3
R′1

= tanϑ′ tanϑ . (5.3)

Notice that, as we have stressed earlier, the topological dressing of an interface does not

affect its angular orientation. The operator On is the product of the nth-frequency expo-

nentials in the general expression (3.5) for a conformal interface, with qH2 sandwiched in

the middle, and with the whole thing evaluated in the ground state of CFT2. The result

depends on the oscillators (a1
n)†, (ã1

n)†, a3
n and ã3

n in the outer regions, as well as on the

evolution parameter q and on the angles ϑ and ϑ′.
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Figure 4: By stripping off their topological parts, we can relate the singularity in the fusion of any

two conformal interfaces to the singularity in the product of two basic radius-changing operators.

To do this calculation, note that the oscillators of the outer regions can be treated

effectively as c-numbers, and that the evolution operator can be absorbed into a rescaling

of the daggered oscillators of the middle region,

(a2
n)† → qn(a2

n)† and (ã2
n)† → qn(ã2

n)† . (5.4)

To lighten the notation, we will replace below (ã2
n)† by a† and similarly for the tilde

oscillators. We also use the shorter notation c ≡ cos 2ϑ, s ≡ sin 2ϑ and similarly for ϑ′.

From eqs. (3.5) and (3.8) we can now read off the following expression for the operator On

in the nth sector:

On = eB1+B3〈0|e(c aã+aA1+ãÃ1) e(−q2nc′a†ã†+qna†A3+qnã†Ã3)|0〉 , (5.5)

where |0〉 is the ground state of the (a, ã) system, and the capital letters stand for the

following mutually-commuting operators:

A1 = s (a1
n)† , Ã1 = s (ã1

n)† , B1 = −c (a1
n)†(ã1

n)†

A3 = s′ a3
n , Ã3 = s′ ã3

n , B3 = c′ a3
nã3

n . (5.6)

We can calculate the matrix element in (5.5) by using the Gaussian representation, eq. (2.8),

and commuting the order of the exponentials so that a passes to the right of a†. This is

similar to the annulus calculation done in section 2. The result reads

On = eB1+B3

∫
d2zd2w

π2
e−zz̄−ww̄e(A1+cz)(qnA3−q2nc′w)e(Ã1+z̄)(qnÃ3+w̄) . (5.7)

Performing the Gaussian integrations over z and w and doing some straightforward algebra

gives:

On =
1

1 + cc′q2n
exp

[(
(a1

n)† ã3
n

)( M11 −M12

−M21 M22

)(
(ã1

n)†

a3
n

)]

with

M =
1

1 + cc′q2n

(
−c− c′q2n ss′qn

ss′qn c′ + cq2n

)
. (5.8)

Plugging this result in eq. (5.2) gives the final expression for the product of two basic

interfaces separated by a distance ε = −logq .

We are now ready to take the q → 1 limit. Simple trigonometry shows that in this limit

M goes over smoothly to S(+)(Θ), where Θ is the angle of the basic (1 ← 3) interface.
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Furthermore the lattice sum goes over smoothly to a multiple of the identity operator.

Thus in the end

e
(R′

1←R2)
def ◦ e

(R2←R′
3)

def = N e
(R′

1←R′
3)

def , (5.9)

where the normalization constant reads

N = limε→0 e2πd/ε

√
sin 2Θ

sin 2ϑ sin 2ϑ′

∞∏

n=1

(1 + cos 2ϑ cos 2ϑ′q2n)−1 , (5.10)

and d/ε is the divergent self-energy counterterm. To calculate the product in the limit, we

use the Euler-MacLaurin formula:

−
∞∑

n=1

log(1 + cc′e−2nε) = − 1

2ε

∫ 1

0

dx

x
log(1 + cc′x) +

1

2
log(1 + cc′) + · · · (5.11)

The divergent part was first computed in ref. [1]. It is a Casimir energy, which is here

removed by d/ε. The subtraction is, as we explained, unambiguous because ε is the only

ultraviolet scale of the problem. The remaining finite terms combine nicely, with the help

of the trigonometric identity

sin 2Θ =
sin 2ϑ sin 2ϑ′

1 + cos 2ϑ cos 2ϑ′
, (5.12)

to give N = 1. This completes the proof that the fusion is independent of the radius R2

in the squeezed-in region, as advertized.

5.2 Decays of interfaces

A corollary of the above calculation is a universal formula for the entropy released in the

fusion of two conformal interfaces. The result depends only on the angular orientations of

the corresponding branes,

∆ log g ≡ log
(
g(I ◦ I ′)

)
− log (g(I)) − log

(
g(I ′)

)

=
1

2
log(1 + cos 2ϑ cos 2ϑ′) . (5.13)

The sign of the entropy release is the same as the sign of the Casimir force d/ε2, where −d

is the leading term in the expansion (5.11). Both are fixed by the product (cos 2ϑ cos 2ϑ′).

When this product is negative I and I ′ tend to attract, and their entropy is lowered by

fusion. This is in accordance with the prediction of the g-theorem [40]. Conversely, when

∆g is positive the composite interface I ◦ I ′ is an unstable RG fixed point.

One can show that all non-topological interfaces are unstable10 by the following ar-

gument: first strip off their non-trivial topological part, with the help of the dressing

identities (4.4). What is left behind is the deformed identity operator, separating two

regions with radii R 6= R′. Notice that these radii must be different, since otherwise the

10Their fusion with boundaries may, nevertheless, still produce stable D-branes.
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original interface would be topological. Now the basic radius-jump interface is unstable to

splitting into smaller jumps. Indeed, the dissociation

e
(R′←R)
def → e

(R′←R′′)
def ◦ e

(R′′←R)
def (5.14)

is entropically favoured whenever R < R′′ < R′ or R′ < R′′ < R. This follows directly

from (5.13). The same conclusion could in fact be reached by considering the effective

theory for the radius field, L ∼ (∂R/R)2 , in which domain walls tend to spread to infinite

thickness. This splitting-off of radius jumps tends to push the bulk radii to their attractor

fixed values. Conformal interfaces could thus prove to be a useful tool for studying the

coupled bulk and boundary RG flows in string theory.11

What about the topological interfaces, whose fusion generates no entropy? These are

marginally unstable against decay to ‘prime-factor partons’, i.e. (1, p) or (p, 1) interfaces

with p a prime number. In the case of BPS black holes the analogous decays are hindered

by infinite-throats [42], so that the bound and unbound states can be distinguished. In the

case at hand, recombination generally increases the dimension of the open-string moduli

space and it is unclear whether such a distinction makes sense. Notice that there is no

process which can reduce the entropy of the (1, p) “partons” back to zero. Annihilation

with the “antiparton” (p, 1) releases an entropy log p.

6. Quantum interfaces

The interfaces discussed so far connect two points in the S1 moduli-space of the c = 1

models. For more general interfaces, the conformal theories on the two sides live in different

branches of moduli space, or may even be completely different theories. In the latter case,

it has been shown by Quella et al [13] that the difference of the two central charges, |c1−c2|,
provides a lower bound to the reflectivity of the interface. Such interfaces are thus never

topological, and may be unstable against dissociation processes like those discussed in the

previous section. This is an interesting question that we will not address here.

Let us consider instead the topological interfaces that connect the circle with the

orbifold branch. Examples of such interfaces are easy to construct. They include all D1-

branes on S1× (S1/Z2) with a 45o orientation. To be more specific, consider the interfaces

on the circle line, setting α = β = 0 for simplicity, and with k1 = 2l1 even. Then the linear

combinations

(2l1, |k2|)cir/orb ≡
1

2
(2l1, k2)

(+) +
1

2
(2l1,−k2)

(+) (6.1)

are good conformal interfaces connecting the circle and the orbifold branch. Note that half-

integer coefficients would have been forbidden for an interface between circle theories. They

are here admissible because D1-branes and their images under φ2 reflection are identified.

As a concrete example consider the (2, 1)cir/orb interface. It becomes topological when the

radius of the orbifold is double that of the circle. Inspection of the lattice sum (3.6) shows

that this interface projects out the odd-winding sectors of the circle theory, and the odd-

momentum and twisted sectors of the orbifold theory. It identifies in an obvious manner

11Coupled bulk and boundary RG flows have been studied differently in ref. [41].
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the remaining states. The entropy of the map is logg = log
√

2. Many other circle/orbifold

and orbifold/orbifold interfaces can be written down in a similar way.

These and all previous topological interfaces share one important common feature:

they have a bulk (closed-string) modulus, which is the product or the ratio of radii on the

two sides. Correspondingly, there is a semi-classical regime where their action is, modulo

a T-duality transformation, geometrical. For the even interfaces, for example, the classical

regime is the limit of large radii with the ratio R1/R2 = |k2/k1| kept fixed. It is well

known, on the other hand, that there exist many non-geometric D-branes, and the same is

true for conformal interfaces. For instance, when Rorb = 2Rcir = R∗ the orbifold and the

circle theories are the same [43], so there exists an isomorphism, τ , between the two. It is

certainly not contained in the list (6.1) because it has zero entropy. When composed with

topological maps, from the circle and/or from the orbifold side, it generates a whole new

class of interfaces, with both the circle and the orbifold radius fixed. We may refer to such

non-geometric interfaces, deep in the CFT moduli space, as purely ‘quantum’.

Quantum interfaces actually exist also on the circle line. They are generated by the

enhanced SU(2)l × SU(2)r isometries of the theory at the self-dual radius, as discussed in

ref. [16]:

e(R∗←R∗)(h, h̃) for all h, h̃ ∈ SU(2) . (6.2)

Multiplying these isometries with our topological operators, from left and right, gives a

large class of topological interfaces:12

I(R1←R2)(h, h̃; k1, k2; k
′
1, k
′
2) ≡ I

(+)
(k1,k2)

◦ e(R∗←R∗)(h, h̃) ◦ I(+)
(k′

1,k′
2)

. (6.3)

For these to be topological both radii must be a priori fixed,

R1 =

∣∣∣∣
k2

k1

∣∣∣∣R∗ and R2 =

∣∣∣∣
k′1
k′2

∣∣∣∣R∗ . (6.4)

The above operators reduce, in fact, to the even and odd interfaces of the previous sections

when h and h̃ commute (up to reflection) with the U(1)2 generators of the circle line. In

this special situation, the constraint on one combination of radii gets relaxed. For more

general rotations, these interfaces break all U(1) symmetries of the model. As shown in

ref. [16] , their action on the basic D-branes of the circle theory produces the continuous

extrapolations between arrays of D0 and D1 branes that were constructed in ref. [31]. This

shows that topological defects can act on D-branes in non-trivial ways.

It would be very interesting to extend the analysis of our paper to these, purely quan-

tum, generators of the interface algebra. This is not straightforward, because it is unclear

how to separate these topological dresses in a fusion process. The results of ref. [41] ac-

tually suggest that the radius deformations of the enlarged algebra may be singular. We

hope to return to these questions in the near future.

12Odd interfaces do not give new operators, because the duality twist is a special SU(2)r isomorphism.

Chains of topological operators between two twists also do not produce new operators. Such chains can be

always fused to give an operator with k1 = k2, which can then be written as a superposition of symmetry

generators.
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